Influence of Wind Strength and Duration on Relative Hypoxia Reductions by Opposite Wind Directions in an Estuary with an Asymmetric Channel
نویسندگان
چکیده
Computer model experiments are applied to analyze hypoxia reductions for opposing wind directions under various speeds and durations in the north–south oriented, two-layer-circulated Chesapeake estuary. Wind’s role in destratification is the main mechanism in short-term reduction of hypoxia. Hypoxia can also be reduced by wind-enhanced estuarine circulation associated with winds that have down-estuary straining components that promote bottom-returned oxygen-rich seawater intrusion. The up-bay-ward along-channel component of straining by the southerly or easterly wind induces greater destratification than the down-bay-ward straining by the opposite wind direction, i.e., northerly or westerly winds. While under the modulation of the west-skewed asymmetric cross-channel bathymetry in the Bay’s hypoxic zone, the westward cross-channel straining by easterly or northerly winds causes greater destratification than its opposite wind direction. The wind-induced cross-channel circulation can be completed much more rapidly than the wind-induced along-channel circulation, and the former is usually more effective than the latter in destratification and hypoxia reduction in an early wind period. The relative importance of cross-channel versus along-channel circulation for a particular wind direction can change with wind speed and duration. The existence of month-long prevailing unidirectional winds in the Chesapeake is explored, and the relative hypoxia reductions among different prevailing directions are analyzed. Scenarios of wind with intermittent calm or reversing directions on an hourly scale are also simulated and compared.
منابع مشابه
Natural Ventilation: Analysis of Indoor Airflow in an Assumed Cubic Building with Opposite Openings by CFD Investigations
The natural ventilation is an easy way to exchange the indoor polluted warm air with outdoor fresh air. The wind power injects outdoor fresh air into the building. A good indoor air current and subsequently a proper exhaust depend on the openings’ conditions and their situations. A serious architectural question is under what conditions of the openings the wind-cross ventilation can be effectiv...
متن کاملAnalyzing the Effects of Soil-Structure Interactions on the Static Response of Onshore Wind Turbine Foundations Using Finite Element Method
The use of wind turbines to generate electricity has increased in recent years. One of the most important parts of a wind turbine is the foundation, which should be designed accurately because it is influenced by difference forces. Soil cannot carry tension stress; thus, when a wind turbine foundation is applied eccentricity forces, a gap appears between the soil and foundation. The gap will ha...
متن کاملInfluence of Nanoparticles Phenomena on the Peristaltic Flow of Pseudoplastic Fluid in an Inclined Asymmetric Channel with Different Wave Forms
The influence of nanofluid with different wave forms in the presence of inclined asymmetric channel on peristaltic transport of a pseudoplastic fluid is examined. The governing equations for two dimensional and two directional flows of a pseudoplastic fluid along with nanofluid are modeled and then simplified under the assumptions of long wavelength and low Reynolds number approximation. The ex...
متن کاملEffects of Drying Temperature and Aggregate Shape on the Concrete Compressive Strength: Experiments and Data Mining Techniques
The main purpose of this paper is to assess the impact of the geometry and size of the aggregate, as well as the drying temperature on the compressive strength of the ordinary concrete. To this end, two aggregates with sharp and round corners were prepared in three different aggregate sizes. After preparing concrete samples, the drying operations were carried out in the vicinity of room tempera...
متن کاملThe Role of Wind Direction and Unidirectional Index in the Time Development and Determining the Sand Dunes Morphology (Case Study: Sadegh Abad Erg-Bafq)
Introduction: At present, about 36% of the land surface is covered by arid and semi-arid areas, with 19% of these levels completely dry and no plant life. In Iran, between one third and one-fourth of Iran's dry surfaces are covered with Sand and Sand Dunes. The arid and semi-arid conditions of Iran have caused about 80 million hectares of Iran to be covered by desert areas, sand dunes and insi...
متن کامل